Problem 1. (Linear Regression) 2 points

Consider the least squares problem $\min_{w \in \mathbb{R}^{d+1}} \frac{1}{N} \|Xw - y\|_2^2$, with $X \in \mathbb{R}^{N \times (d+1)}$ and $y \in \mathbb{R}^N$. For the following example, is the optimal solution $w^* \in \mathbb{R}^{d+1}$ unique? Justify your answer.

$$X = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 1 & 0 \\ 1 & -3 & 4 \end{bmatrix}, y = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

Solution: The optimal solution is not unique because the columns are not linearly independent. The difference between the first and the second column equals the third column.

Problem 2. (Overfitting and underfitting) 4 points

You are addressing a regression problem with $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. You have tried three different approaches: A, B, C. Each approach gives you a predictor. So, your set of predictors is $\{f_A, f_B, f_C : \mathbb{R}^d \to \mathbb{R}\}$. You obtained the following average train error and test error for each model.

model	train error	test error
A	9.760	9.165
В	0.211	5.072
\mathbf{C}	0.633	0.712

1. (1 point) Circle those model(s) that seem to be overfitting: A B C

Solution: Model B is overfitting.

2. (1 point) Circle those model(s) that seem to be underfitting: A B C

Solution: Model *A* is underfitting.

3. (2 points) Circle the model which could profit most from L2 regularization: A B C Justify your answer.

Solution: Regularization helps prevent overfitting. Hence, we should apply it to model B.

Problem 3. (Logistic regression: gradient descent) 4 points

Consider a binary classification problem with data $\{x^i, y^i\}_{i=1}^N$, $x^i \in \mathbb{R}^d$, $y^i \in \{0, 1\}$. Let our predictor be 1 if $z^i = w^T x^i + b > 0$ and 0 otherwise. The loss function for training is:

$$L(w,b) = \frac{1}{N} \sum_{i=1}^{N} y^{i} \log(1 + e^{-z^{i}}) + (1 - y^{i}) \log(1 + e^{z^{i}}).$$

1. (2 points) Write down the gradient of L(w,b) with respect to b i.e. $\frac{\partial L(w,b)}{\partial b}$.

SCIPER:

Solution:

$$\frac{\partial L(w,b)}{\partial b} = \sum_{i=1}^{N} \frac{\partial L(w,b)}{\partial z^{i}} \frac{\partial z^{i}}{\partial b}$$
(0.1)

$$= \frac{1}{N} \sum_{i=1}^{N} \left(-y^{i} \frac{1}{1 + e^{-z^{i}}} e^{-z^{i}} + (1 - y^{i}) \frac{1}{1 + e^{z^{i}}} e^{z^{i}} \right) \frac{\partial z^{i}}{\partial b}$$
(0.2)

$$= \frac{1}{N} \sum_{i=1}^{N} \left((1 - y^{i}) \frac{1}{1 + e^{z^{i}}} e^{z^{i}} - y^{i} \frac{1}{1 + e^{-z^{i}}} e^{-z^{i}} \right)$$
 (0.3)

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{(1-y^i)e^{z^i} - y^i}{1 + e^{z^i}},\tag{0.4}$$

where (0.1) follows by the chain rule.

2. (2 points) Complete the gradient descent step below (no need to calculate $\frac{\partial L(w,b)}{\partial w}$).

Solution: We write the gradient descent step to find the parameters (w, b) as follows.

$$w(t+1) = w(t) - \alpha \frac{\partial L}{\partial w}(w(t), b(t)), b(t+1) = b(t) - \alpha \frac{\partial L}{\partial b}(w(t), b(t)),$$

where α is the step size.